Applications to continuous-time processes of computational techniques for discrete-time renewal processes

J.M. van Noortwijk and J.A.M. van der Weide

Available online 28 March 2008.

ABSTRACT

For optimising maintenance, the total costs should be computed over a bounded or unbounded time horizon. In order to determine the expected costs of maintenance, renewal theory can be applied when we can identify renewals that bring a component back into the as-good-as-new condition. This publication presents useful computational techniques to determine the probabilistic characteristics of a renewal process. Because continuous-time renewal processes can be approximated with discrete-time renewal processes, it focusses on the latter processes. It includes methods to compute the probability distribution, expected value and variance of the number of renewals over a bounded time horizon, the asymptotic expansion for the expected value of the number of renewals over an unbounded time horizon, the approximation of a continuous renewal-time distribution with a discrete renewal-time distribution, and the extension of the discrete-time renewal model with the possibility of zero renewal times (in order to cope with an upper-bound approximation of a continuous-time renewal process).

Keywords: Discrete renewal process; Renewal function; Second-moment properties; Gamma process; Geometric distribution

Reliability Engineering and System Safety, Volume 93, Issue 12, December 2008 pag. 1853-1860

Article Outline

1. Introduction
2. Discrete-time renewal processes
 2.1. Expected value of number of renewals
 2.2. Probability distribution of number of renewals
 2.3. Distribution of renewal occurrence times
 2.4. Rate of renewal per unit time
 2.5. Variance of number of renewals in time interval
 2.6. Asymptotic properties of number of renewals
 2.7. Renewals with possible zero renewal time
3. Discretised continuous-time renewal processes
 3.1. Discretised continuous renewal distribution
 3.2. Discrete random bounds for renewal times
 3.3. Lower and upper bound for renewal function
 3.4. Bounds for second moment of number of renewals
4. Applications
 4.1. Geometric distribution
 4.2. Discretised non-stationary gamma process
5. Conclusions
Acknowledgements
References