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Abstract 

The purpose of the paper is to describe and compare deterioration and maintenance 
models for civil infrastructures. These models can be applied to determine the best 
maintenance strategy to insure an adequate level of safety at minimal life-cycle cost 
while taking the uncertainties in the deterioration process into account. Without being 
complete, a time-dependent deterioration process can be modelled as a failure rate 
function, a Markov model, a stochastic process or a time-dependent reliability index. 
The pros and cons of the different models considered are discussed. 

Introduction 

This paper describes and compares deterioration and maintenance models for civil 
infrastructures that can be used to balance structural reliability and life-cycle cost. 
Civil infrastructure systems are designed for a particular service life and deteriorate 
with time. Maintaining these structures in a safe condition during their entire service 
life has been recognised as a very critical issue worldwide. According to Das (1999) 
there are two types of maintenance work: preventive maintenance which if it is not 
done it will cost more at a later stage to keep the structure in a safe condition, and 
essential maintenance which is required to keep the structure safe. Whilst it is easy to 
defend essential maintenance work on safety grounds, since failure consequences are 
in general extremely large, preventive treatments are more difficult to justify. The use 
of maintenance optimisation models is therefore of considerable interest for optimum 
life-cycle maintenance of deteriorating civil infrastructures. 

An essential part of modelling maintenance is taking account of the 
uncertainties in the deterioration and the time of failure. In this paper, a brief overview 
is given on how to model uncertain deterioration for the purpose of maintenance 
optimisation. Without being complete, a time-dependent deterioration process can be 
modelled as (i) a failure rate function, (ii) a Markov model, (iii) a stochastic process or 
(iv) a time-dependent reliability index. 

The outline of this paper is as follows. In the next four sections, the pros and 
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cons of the above-mentioned mathematical deterioration models are discussed by 
focussing on the maintenance decisions to be made. Next, the four deterioration 
models are compared. Finally, conclusions are formulated in the last section. 

Failure rate function 

A lifetime distribution represents the uncertainty in the time to failure of a component 
or structure. Let the lifetime have a cumulative probability distribution F(t) with 
probability density function f(t), then the failure rate function is defined as 
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(Barlow and Proschan, Chapter 2). A useful probabilistic interpretation of the failure 
rate function is that r(t)dt represents the probability that a component of age t will fail 
in the time interval [t, t + dt]. For deteriorating components or structures, the failure 
rate is increasing. Lifetime distributions and failure rate functions are especially useful 
in mechanical and electrical engineering. In these fields, one often considers 
equipment which can assume at most two states: the functioning state and the failed 
state. For example, a motor or switch is either working or not. A structure, on the other 
hand, can be in a range of states depending on its degrading condition. A serious 
disadvantage of failure rates is that they cannot be measured.  

The area of optimising maintenance through mathematical models based on 
lifetime distributions was founded in the early sixties. This pioneering work is 
summarised in McCall (1965) and Barlow and Proschan (1965). Well-known models 
of this period are the age replacement model (replacement upon failure or upon 
reaching a predetermined age k, whichever occurs first) and the block replacement 
model (replacement upon failure and periodically at the times k, 2k, 3k, …); see 
Barlow and Proschan (1965, Chapters 3-4). According to Dekker (1996) and Dekker 
and Scarf (1998), the age replacement model is one of the maintenance optimisation 
models that has been applied most. 

Markov model 

A Markov deterioration model is based on the assumption that the condition of a 
component can be described in terms of a limited number of condition states. 
Transition probabilities link the current state with a maintenance action to a future 
state. A transition probability is defined as the probability that a component will move 
from one state to another (same or worse one) depending on the action taken (including 
“no action”). The Markov property entails that the probability of deteriorating to 
another state doesn’t depend on the history of the process, but only depends on the last 
condition and action. The time of transition from one state to another may have a 
probability distribution. Because a Markov deterioration model is condition-based, it 
is quite flexible in adapting it to (visual) inspection data and to incorporate inspections. 

Examples of maintenance optimisation models based on Markovian 
deterioration are the Arizona Pavement Management System (Golabi et al., 1982; 
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Wang and Zaniewski, 1996) and the Bridge Management System PONTIS (Golabi and 
Shepard, 1997; Thompson et al., 1998). These models are described below. 

The Arizona Pavement Management System (APMS) uses linear programming 
to find the cost-optimal maintenance strategy. Roads are subdivided in lanes of fixed 
length (pavement segments) for which maintenance actions are formulated. Three 
deterioration characteristics are used to define the pavement condition: roughness, 
cracking, and index to the first crack (damage initiation time). They are discretised into 
45 condition states (composed from three “roughness” states, three  “cracking” states, 
and five “index to first crack” states). 

The Bridge Management System PONTIS utilises the same Markovian linear 
programming approach as APMS. Bridge management, however, is more complex 
than road management. Bridges suffer from a lack of deterioration knowledge and data, 
don’t allow for defining only a few uniform segments, have a great variety in type and 
design, and have many components deteriorating at different rates. For each 
component, PONTIS determines optimal maintenance actions for which the expected 
discounted cost over an unbounded time horizon is minimal. 

As indicated in Frangopol and Das (1999) and Frangopol et al. (2001), the 
Markovian approach used in currently available bridge management systems has four 
important limitations, such as: (i) deterioration of a component is described in visual 
terms only; (ii) condition deterioration is assumed to be a single step function; (iii) 
future condition solely depends on the current condition (not on the deterioration 
history); and (iv) bridge system condition deterioration is not explicitly considered. 

Stochastic process 

A convenient way in modelling the uncertainty in time-dependent deterioration is by 
regarding it as a stochastic process. Examples of stochastic processes that can be used 
to model deterioration are the Brownian motion with drift (also called the Gaussian 
process) and the gamma process. A gamma process is a stochastic process with 
independent non-negative increments having a gamma distribution. A characteristic 
feature of the Brownian motion with drift is that a structure’s resistance alternately 
increases and decreases. For this reason, the Brownian motion is inadequate in 
modelling deterioration which proceeds in one direction. In order for the stochastic 
deterioration process to proceed in one direction, it can best be considered as a gamma 
process. Because inspection measurements generally consist of cumulative amounts of 
deterioration, the advantage of the gamma process is evident. A related advantage of 
stochastic deterioration processes is that the modelling of inspections is quite natural 
and realistic. Even imperfect inspections can be dealt with, though the mathematical 
models become quite complex (Newby and Dagg, 2002; Kallen and Van Noortwijk, 
2003). 

Gamma processes have been applied to model the following deterioration 
processes: permanent coastal erosion of dunes (Van Noortwijk and Peerbolte, 2000), 
crest-level decline of dykes (Speijker et al., 2000), longshore rock transport near berm 
breakwaters (Van Noortwijk and Van Gelder, 1996), scour-hole development under 
the block mats of the Eastern-Scheldt barrier (Van Noortwijk and Klatter, 1999), 
current-induced rock displacement near the rock dumping of the Eastern-Scheldt 
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barrier (Van Noortwijk et al., 1997), loss of steel thickness due to corrosion (Bakker et 
al., 1999), and corrosion of a hydrogen dryer (Kallen and Van Noortwijk, 2003). 

On the basis of the above-mentioned gamma processes, tailor-made models 
have been built and implemented to determine the following cost-optimal maintenance 
decisions: optimal sand nourishment sizes and optimal dyke heightenings for which 
the expected costs of initial investment and future maintenance are minimal (Van 
Noortwijk and Peerbolte, 2000; Speijker et al., 2000); optimal inspection intervals for 
berm breakwaters, and for the block mats and rock dumping of the Eastern-Scheldt 
barrier for which the expected costs of inspection, maintenance and failure are minimal 
(Van Noortwijk and Van Gelder, 1996; Van Noortwijk and Klatter, 1999; Van 
Noortwijk et al., 1997); optimal intervals of lifetime extension by means of applying a 
protective steel coating for which the expected costs of lifetime extension and 
replacement are minimal (Bakker et al., 1999); and optimal inspection intervals for a 
hydrogen dryer for which the expected costs of inspection and maintenance are 
minimal (Kallen and Van Noortwijk, 2003). For those situations in which maintenance 
actions can be regarded as renewals bringing a component back to its original 
condition, renewal reward theory has been used to compute the expected costs 
(Rackwitz, 2001; Van Noortwijk, 2003). 

As a basis for optimising maintenance, the Dutch Ministry of Transport, Public 
Works and Water Management (Rijkswaterstaat) implemented the age replacement 
model with discounted cost. This model has been applied for justification and 
optimisation of maintenance measures in the Netherlands (Klatter et al., 2002); 
detailed information on this model can be found in Van Noortwijk (1998) and Bakker 
et al. (1999). The criterion of expected discounted cost (net present value) over an 
unbounded horizon is used for comparing maintenance decisions. With the 
maintenance model, the expected discounted costs over a bounded horizon can also be 
calculated. In situations with a bounded time horizon larger than 50 years, the cost over 
an unbounded horizon may serve as a good approximation. By using this criterion, the 
cost of preventive maintenance can be balanced against the cost of corrective 
maintenance. For a discussion about which cost-based criterion can best be used, we 
refer to Van Noortwijk and Peerbolte (2000). 

In Rijkswaterstaat’s model, ageing has been modelled by a gamma 
deterioration process, where failure is defined as the event in which – due to 
deterioration – the condition at time t, denoted by the resistance R(t), drops below the 
failure condition s. It is assumed that the expected deterioration at time t, denoted by 
E(X(t)), can be described using a power law; that is, the expected deterioration at time 
t can be written as atb for a, b > 0. The optimal preventive replacement interval follows 
from an age replacement model based on a lifetime distribution. The probability of 
failure per year (discrete lifetime distribution) is defined as the probability that the 
condition drops below the failure condition per year. 

This deterioration model has been extended for the possibility of 
lifetime-extending maintenance. With the extended model both the interval of lifetime 
extension and the interval of preventive replacement can be optimised. Through 
lifetime extension, the deterioration can be delayed so that failure is postponed and the 
lifetime of a component is extended (e.g., a coating protecting steel). Possible effects 
of lifetime-extending measures are the initiation period (time interval in which no 
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deterioration occurs) and the condition improvement. Through replacement, the 
condition of a component is restored to its original condition. 

Time-dependent reliability index 

Experience gained in different countries shows that the major part of the work on 
existing bridges depends on the load carrying capacity (or structural reliability) of the 
bridge system rather than the condition states of the bridge elements alone (Frangopol 
and Das, 1999). Consequently, bridge management systems have to consider bridge 
reliability deterioration. 
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Figure 1: Reliability Profiles and Associated Random Variables for the Options with 
or without Preventive Maintenance. 

The reliability profile )(tβ is defined as the variation of the reliability index 
with time, (Thoft-Christensen, 1996; Estes and Frangopol, 1996; Nowak et al., 1998). 
Similar bridges designed and constructed to the same requirements, for various 
reasons, end up with different reliability levels (Frangopol and Das, 1999). This 
variation of reliability index influenced by various factors can be captured by using 
random variables. The eight random variables affecting the lifetime reliability profile 
of an individual deteriorating structure or a group of deteriorating structures under 
maintenance are shown in Figure 1 (Frangopol et al., 2001). These eight random 
variables are: (i) the initial reliability index B0, (ii) the time of damage initiation TI, (iii) 
the reliability index deterioration rate A without lifetime extension, (iv) the time of first 
application of preventive lifetime-extending maintenance TPI, (v) the time of 
reapplication of preventive lifetime-extending maintenance TP, (vi) the duration of 
preventive lifetime-extending maintenance effect on reliability TPD, (vii) the 
deterioration rate of the reliability index during preventive lifetime-extending 
maintenance effect Θ , and (viii) the improvement in the reliability index (if any) 
immediately after the application of preventive lifetime-extending maintenance Γ . 
The probability density distributions of B0, TI, A, TPI, TP, TPD, Θ , and Γ , and their 
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main descriptors for a group of steel/concrete composite bridges are indicated in 
Frangopol et al. (2001). Monte Carlo simulation is used to generate random samples 
from the probability density functions of the eight random variables B0, TI, A, TPI, TP, 
TPD, Θ , and Γ  and to capture the propagation of uncertainties during the entire 
service of existing deteriorating structures. 

Reliability-based management represents the future generation of bridge 
management systems. An advantage of reliability-based maintenance/management is 
that the reliability is explicitly taken into account. A disadvantage is that the effects of 
maintenance (e.g., lifetime extension) on the reliability index are difficult to estimate. 

Model comparison 

In this section, the differences, similarities and interrelations between the four 
approaches to model deterioration are explained. Let us denote the initial resistance by 
r0, the resistance (condition) at time t by R(t), the stress at time t by S(t), and the 
cumulative amount of deterioration by X(t). Obviously, R(t) = r0 – X(t). The 
interrelations between the four deterioration models are mathematically nicely 
summarised by the following formula: 

β( ) ( ( )) Pr min ( ) ( )t F t R u S u
u t

= − = − − <FH IK− −
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0
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where Φ is the normal cumulative distribution function. The failure rate function in 
Eq. (1), r(t), is based on the lifetime distribution F(t). Markovian deterioration focuses 
on R(t), where the condition scale is discretised in terms of a limited number of 
condition states and the transition probabilities determine how deterioration proceeds 
in time. Stochastic deterioration processes model the uncertainty in the cumulative 
amount of deterioration X(t). The time-dependent reliability index directly focuses on 
β (t). Ideally, the best way is to base a deterioration model on the time-dependent 
stochastic processes of resistance and stress, and to compute the corresponding 
lifetime distribution and failure rate function, as well as the time-dependent reliability 
function. A disadvantage of a Markovian deterioration model is that the relation with 
the applied stress cannot be quantified accurately (because of the limited number of 
condition states). 

Conclusions 

Reliability-based deterioration and maintenance models represent the future 
generation of structure management systems. The advantage of reliability-based 
maintenance is that the reliability is explicitly taken into account. In condition-based 
deterioration models, the reliability only follows implicitly after transforming 
condition to reliability. The advantage of condition-based models is that conditions 
can be measured or inspected, whereas reliabilities must be computed, and that 
inspections can naturally be included in maintenance models. Ideally, the best way is to 
base a deterioration model on the time-dependent stochastic processes of resistance 
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and stress, and to compute the corresponding lifetime distribution and failure rate 
function, as well as the time-dependent reliability function. 
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